

WWW.LUNAINC.COM

Precision – Control – Results

DESCRIPTION

The **SD012-UVC-011** is an AlGaN **UVC** photodiode with a 0.076 mm² active area, hermetically assembled in TO-46 package. Unlike most UV detectors it cuts off unwanted visible light from its detection spectrum (**210-280nm**), thereby eliminating the need for optical filter.

RELIABILITY

This Luna high-reliability device is in principle able to meet military test requirements (Mil-STD-750, Mil-STD-883) after proper screening and group test.

Contact Luna for recommendations on specific test conditions and procedures.

FEATURES

- Schottky-Type Photodiode
- Photovoltaic Mode Operation
- Low Noise
- High Speed
- Visible Blindness

APPLICATIONS

- UVC Detection and Monitoring
- Medical
- Military

ABSOLUTE MAXIMUM RATINGS

SYMBOL	MIN		MAX	UNITS	
Storage Temperature	-40	to	+125	°C	-
Operating Temperature	-30	to	+85	°C	-
Soldering Temperature	-	to	+260	°C	T _a = 23°C UNLESS NOTED OTHERWISE
Forward Current	-	to	1.0	mA	-
Reverse Voltage	-	-	5.0	V	-

WWW.LUNAINC.COM

Precision – Control – Results

OPTO-ELECTRICAL PARAMETERS

T_a = 23°C UNLESS NOTED OTHERWISE

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Dark Current	V _R = 0.1V	-	0.1	100	рА
Shunt Resistance	$V_R = 10 \text{ mV}$	1.0	100	-	$G\Omega$
Short Circuit Current	UVI=1.0	-	20	-	nA
Spectral Application Range	Spot Scan	210	-	280	nm
Responsivity Peak	λ = 275 nm V, V _R = 0 V	-	0.06	-	A/W
Capacitance	$V_{bias} = 0V$; $f = 1 MHz$	-	10	-	pF
Noise Equivalent Power	λ= 350 nm	-	1.6	-	10 ⁻ ¹⁷ W/Hz ^{0.5}

TYPICAL PERFORMANCE

SPECTRAL RESPONSE

0.07 0.06 0.08 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.03 0.04 0.05 0.08 0.09

NOISE vs. BIAS

UV-A PHOTOCURRENT

UV-I PHOTOCURRENT

