

High-Definition Continuous Fiber Grating (CFG) Sensors

High-definition continuous fiber grating (CFG) strain sensors are low-profile, flexible sensors for use with the ODiSI measurement system for high resolution strain measurements with enhanced robustness and reliability in dynamic environments.

Compatible with all ODISI 6000 Series systems and standard length remote modules, CFG sensors provide a strain gage pitch of 6 mm. CFG sensors are supplied with NIST-traceable calibration coefficients and a unique key ID that enables plug-and-play identification and operation.

KEY FEATURES

- Improved performance in dynamic environments
- Low profile for embedded or surface applications
- Flexible, polyimide coated fiber
- NIST-traceable calibration
- Included sensor key enables plugand-play operation
- Compatible with ODiSI 6000/6100 system with software v2.4.0 or later

PARAMETER	SPECIFICATIONS
Fiber coating	Polyimide
Grating pitch	6 mm
Grating width	5 mm
Sensor diameter	155 μm
Termination diameter	286 μm
Minimum bend radius	10 mm
Strain Relief	20 cm, fiberglass
Sensor termination - material	Glass
Sensor termination - length x outer diameter	8 mm x <0.4 mm
Operating temperature - sensing region	-40 to 300 °C
Operating temperature - connector	-60 to 150 °C

ORDERING

Part Number HDCFG0xxLCP

Description

Continuous fiber grating (CFG) strain sensor, with reference calibration key files

Sensor length S₁ (m): 01, 02, 03, 05, 10, or 15 m

